

COMPANY PROFILE

Aakash Polyfilms Ltd has been an integral part of the Indian Flexible Packaging Industry for more than three decades.

Aakash Polyfilms Ltd, Has 2 manufacturing units.

Unit 1, located at GIDC Sachin, Surat, Gujarat, & has been involved in the manufacture of Clear & Metalised CPP Films.

Unit 2, located at GIDC Jhagadia, Ankleshwar, Gujarat, manufactures BOPET and BOPP Films.

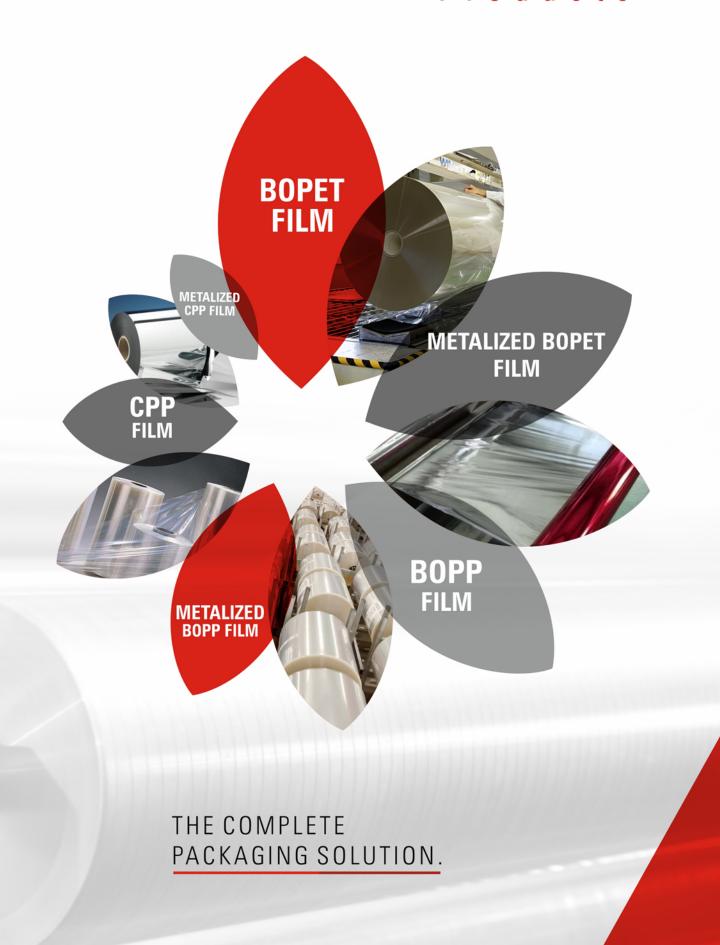
Unit 1 also houses 3 state of Art metallisers with operating widths of 2450mm and 1650mm, We Metalise CPP, BOPP and BOPET films.

Metalisers are also equipped with a Plasma Treater for producing Films with High Metal Bond Strength, High Barrier Properties with high quality metallising.

Our BOPET Film Line is from Bruckner, Germany, with a deckle of 8950 mm, has a capacity of 42000 TPA. We can offer films with thickness ranging from 6 micron to 40 micron.

The BOPP Film Line, also from Bruckner, has a deckle of 6500 mm. Can produce 12000 TPA of Films with thickness from 18 to 50 Mic.

The CPP Film Line is capacitated to produce 3500 TPA, of prime quality film in a thickness range of 18 to 50 Mic.


Our range of Films have been accepted with major customers across India as well as in international markets.

We have the backing of highly skilled technical team for Product development, Quality Maintenance & interface with customers to meet their stringent demands.

We are FDA Approved, ISO-9001-2015 and Global Standard For Food Safety Certified Company.

POLYFILM S Products

BOPET FILM

APPLICATIONS

- · Reverse printing & lamination for Flexible Packaging.
- · Lamination to paper & board.
- · Labels & Hot Foil Stamping.
- Metallizing for flexible packaging, micro slitting & yarn
- Electrical Insulation.
- Release Film

DESCRIPTION

Transparent, high gloss & excellent clarity, Corona treated on either side with Slip & anti-static properties for good machine ability & printability for flexible packaging.

Corona treated side is specifically designed for excellent adhesion of inks & adhesives.

- High surface Gloss & transparency.
- Excellent clarity.
- Excellent treatment level & retention.
- Excellent adhesion of inks & adhesives.
- · Excellent machine ability & stability.
- Excellent barrier properties.
- Excellent mechanical Properties.
- · Inside or outside treated as per specification.

TECHNICAL DATA SHEET FILM

SR. NO.	I PROPERTIES I	TEST METHOD	I UNIT	NIT TYPICAL VALUES						
1.	Thickness	Internal	(μ)	8	10	12	15	19	23	36
		Internal	Gauge	32	40	48	60	76	92	144
	1 1	Internal	1 2 //	90	70	59.52	47.62	37.59	31.05	19.84
2.	Yield	Internal Internal	m ² /kg	63300	72 50600	41934	33550	26483	21876	13978
	1	IIILEITIAI	n ² /lb	03300	30000	41934	33330	20403	210/0	13970
3.	Surface Tension (min) # (Corona Treated Surface)	ASTM D - 2578	dyne/cm				48			
4.	COF (max) (Corona Treated to Untreated (Untreated to Untreated)	ASTM D - 1894	_	0.5	0.5	0.5	0.5	0.5	0.5	0.45
	(Untreated to Untreated)			0.45	0.45	0.45	0.45	0.4	0.4	0.4
	1 1		1 1							
5.	HAZE	ASTM D - 1003	%	3.5	3.5	4	4	4	4.5	5
6.	TENSILE STRENGTH MD	ASTM D - 882	Kgs/cm ²	2000	2000	1900	1900	1900	1900	1750
	(Min) TD		1.50,0	2100	2100	2000	2000	2000	2000	2000
	1 11		1 1							
7.	ELONGATION MD (Min) TD	ASTM D - 882	%	110	110	105	105	110	90	120
	(10			100	100	85	85	85	90	90
8.	SHRINKAGE MD		0/	-	-	5	5	5	5	-
0.	(5 Minute at 190°C) TD	ASTM D - 1204	%	-	-	0.6	0.6	0.6	0.6	-
0	SHRINKAGE MD	ASTIVI D - 1204	0/	3.5	3.5	3.5	3.5	3.5	3.5	2.5
9.	(150°C FOR 30 MINUTS) TD		%	0.5	0.5	0.5	0.5	0.5	0.5	0.8
10.	WVTR (38°C & 90% RH)	ASTM F - 1249	gm/m ² /day	60	40	45	40	35	30	20
	(typical)		gm/100 in ² /day	3.8	2.5	2.9	2.6	2.3	2	1.3
	,									
11.	OTR (23°C & 0% RH)	ASTM D - 3985	cc/m ² /day	140	130	130	110	90	80	70
	(typical)		cc/100 in ² /day	8.8	8.1	8.5	7.1	5.8	5.2	45

Note:

- 1) Above properties can be modified to suit customer's requirement.
- 2) Unless otherwise specified, the values given above are nominal.

CHEMICALLY COATED BOPET FILM

APPLICATIONS

Printing and Lamination for Flexible packaging, Matalizing for Flexible packaging.

DESCRIPTION

Transparent high Gloss and corona on either side for excellent mechanability and printability for Flexible packaging.

Chemical coating enhances bond strength and link addition.

- · High surface Gloss and Transparency.
- · Enhanced treatment level and retention..
- · Excellent Machinability and Stability.
- Excellent barrier properties.
- · Excellent Mechanical properties.
- · Corona treatment and chemical coating on either side.

CHEMICALLY COATED BOPET FILM TECHNICAL DATA SHEET

SR. NO.	I PROPERTIES I	TEST METHOD	I UNIT	PL	AIN	TREA	TED
				10 μ	l 12 μ	10 μ	12 μ
1.	Film Code	Internal	-	APGT - 10 CC	APGT - 12 CC	APGT - 10 CC/CT	APGT - 12 CC/CT
2.	Nominal Thickness	Internal	(μ)	10	12	10	12
3.	Yield	Internal	g/m²	71.4	59.6	71.4	59.6
4.	Haze	ASTM D - 1003	%	3	3	3	3
5.	TENSILE MD	ASTM D - 882	Kan/am2	2200	2200	2200	2200
5.	STRENGTH TD	A21M D - 997	Kgs/cm ²	2100	2100	2100	2100
6.	ELONGATION TD	ASTM D - 882	%	100 90	100	100 90	100 90
7.	SHRINKAGE MD (30 Minutes for 150°C) TD	ASTM D - 1204	%	2.5 0.5	2.5	2.5 0.5	2.5 0.5
8.	COF (Max)	ASTM D - 1894	Static/Kinetic	0.5 0.45	0.5 0.45	0.5 0.45	0.5 0.45
9.	Wetting Tension Coated Side	ASTM D - 2578	Dyne/cm	56	56	56	56
10.	Wetting Tension	ASTM D - 2578	Dyne/cm	44	44	50	50
11.	MVTR (38°C & 90% RH) (typical)	ASTM D - 1249	gm/m²/day	40	40	40	40
12.	OTR (23°C & 0% RH) (typical)	ASTM D - 3985	cc/m²/day	130	130	130	130

Note: MD - Machine Direction - TD

METPET FILM

APPLICATIONS

- · Lamination for flexible packaging.
- · Micro slitting for yarn.
- · Sequins & glitter.
- Gift wraps.
- Paper plates.

DESCRIPTION

One side Metallised for lamination & flexible packaging.

Plasma treated for High metal bond strength & barrier properties.

- Excellent aesthetics & surface gloss.
- Excellent barrier properties.
- · Superior metal bond strength & lamination bond strength
- · Excellent machine ability & stability.

METPET FILM

TECHNICAL <mark>DATA SHEET</mark>

SR. NO.	PROPERTIES	I UNIT I	TEST METHOD	DD TYPICAL VALUES								
				9	10	12	15	19	23			
	Optical Density *** (Tolerance: +/- 5%)			SD	2.2 - Norr	mal Packaging	Application					
1.	(Tolerance: +/- 5%) (***Customer to spe	acify the O.D.		HD	HD 2.5 – High Barrier Application							
	value as per their ap	pplication)		VHD	2.8 - Spec	cial Application	1					
0	Thickness	μ		9	10	12	15	19	23			
2.	Average Gauge	(Gauge)	Internal	36	40	48	60	76	92			
		'			l							
3.	51.5	(D 4505	1.4	1.4	1.4	1.4	1.4	1.4			
ა.	Film Density	gm/cc	D - 1505	1.4	1.4	1.4	1.4	1.4	1.4			
4.	Grammage	g/m ²	Internal	12.6	14	16.8	21	26.6	32.2			
		l l		I								
F	Wald	2	lata mal	70.00	74.40	50.50	47.00	27.50	24.05			
5.	Yield	m ² /Kg	Internal	79.36	71.42	59.52	47.62	37.59	31.05			
						1	ı					
6.	C.O.F (Tr. Film/Un tr.Film)	Static/Kinetic	ASTM D - 1894	0.7	0.7	0.7	0.7	0.7	0.7			
				1								
	LMD	l I		1900	1900	1900	1900	1900	1900			
7.	Tensile Strength TD	Kg/cm ²	ASTM D - 882	2000	2000	2000	2000	2000	2000			
				-								
8.	Elongation MD	%	ASTM D - 882	90	100	105	105	110	115			
	TD			80	80	85	85	85	95			
9.	MVTR (38°C & 90% RH)	gm/m2/day	ASTM F - 1249	S	D		ID	VI	HD .			
	1117 111 (00 0 0 0 00/01111)	3.14.11.2, 3.44	A011VII - 1243		1	0	.6	0.	4			
10.	OTR (23°C & 0% RH)	cc/m2/day	ASTM D - 3985	1	.1		1	0.	.8			
10.	OTH (23 C d 0% NA)	56/111Z/ddy	A011VI D - 3303									

The film have superior gloss when metalized on optically clear base film and further improved when metallized on extra clear base film. Film is available in optical density ranging from 1.4 to 3.0. The wide range of optical densities give choice to the customer to use the product for diverse range of applications. The metallization is available on plain side (MU) or on corona treated side (MT), as specified by the customer. The bond between the metal and film is 100-150gm/25mm (when metallized on plain side) & 130-180gms/25mm (when metallized on corona side).

Some of the differences between CPP and BOPP are listed below for better understanding:

- CPP is a soft film like polyethylene, whereas BOPP is a bit stiff and crinkly.
- CPP does not dead-fold well due to its natural living hinge, whereas BOPP has better dead-fold characteristics.
- CPP can be ultrasonically or thermally sealed without the use of any specialty coatings, whereas BOPP does not heat seal well without the use of specialty heat seal coatings.
- BOPP films have better barrier properties, While CPP has better barrier properties as compared to polyethylene and PVC films.

Cast polypropylene - CPP

CPP has a higher tear and impact resistance, and better cold temperature performance and heat-sealing properties as compare to BOPP. There are various type of CPP films like general CPP, Metalized CPP, Pearlised CPP and several other applications depending on the requirement and end application.

Some of the major benefits of CPP are listed below:

- Excellent heat seal strength, high puncture and tear resistance.
- Excellent packaging integrity at extreme temperatures and high heat resistance.
- No impact on the coefficient of friction (COF) control.
- High yield per unit area and low specific weight.
- Offers good moisture barrier.
- High transparency.

BOPP: THE INVENTION THAT CHANGED THE FACE OF FLEXIBLE PACKAGING

Low density, exceptional optical, mechanical and barrier properties have made Biaxial Oriented Polyprophlene (BOPP) the preferred choice for a variety of flexible packaging applications. BOPP films are produced by stretching Polypropylene film in both machine direction and transverse direction.

THE NEW-AGE FEATURES OF BOPP FILMS MEET SEVERAL KEY REQUIREMENTS:

- · High barrier properties.
- · The range of customized sealing.
- Shelf appeal.
- · Food contact safety.
- · Mechanical strength.
- · Ease of use.
- · Machinability.
- · High linear speed.

BOPP is a technology-driven link in the packaging Industry. It has applications across industries that require special features in flexible packaging. It delivers post-harvest conservation, nutrient preservation, damage-free distribution, shelf appeal and other industry specific advantages.

Our Products, Our Excellence.

BOPP FILMS

APPLICATIONS

Pressure sensitive adhesive tape grade.

DESCRIPTION

Transparent, non heat sealable, one side corona treated, high glossy OPP film for use in pressure sensitive adhesive tape manufacturing application. The corona treated surface is specifically designed for excellent anchorage of various solvent and water based pressure sensitive adhesive used for self adhesive tape manufacturing. Untreated side is back treatment free, which facilitate the trouble free unwinding of adhesive coated jumbo rolls.

- · High surface gloss.
- Excellent Surface Treatment Retention.
- Excellent anchorage of various pressure sensitive adhesives on treated side.
- Back treatment free.
- · Excellent machinability.
- · Excellent mechanical properties.
- · Excellent dimensional stability.

BOPP FILM S

PROPERTIES	TEST METHOD	UNIT	A21N1-TP	A23N1-TP	A25N1-TP	A29N1-TP
Physical						
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	21 19.11 52.3	23 20.93 47.7	25 22.75 43.9	29 26.39 37.9
Surface						
Treatment Level (Min)	ASTM D 2578	dyne/cm	38	38	38	38
Optical						
Haze (Max) Gloss (Min) at 45 ⁰ Angle	ASTM D 1003 ASTM D 2457	% -	2.2 95	2.2 95	2.2 95	2.2 95
Mechanical						
Coefficient of Friction (Max)	ASTM D 1894	Static Kinetic	0.50 0.45	0.50 0.45	0.50 0.45	0.50 0.45
Tensile Strength (Min)	ASTM D 882	_{kg/cm²} MD TD	1300 2600	1300 2600	1300 2600	1300 2600
Modulus (Min)	ASTM D 882	kg/cm² TD	18000 28000	18000 28000	18000 28000	18000 28000
Elongation (Max)	ASTM D 882	MD % TD	170 60	170 60	170 60	170 60
Thermal						
Shrinkage (Max) at 120°C / 5 min	ATM	MD * TD	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3
Seal Initiation Temperature (Max)	ATM	°C	-	-	-	-
Sealing Strength (Min) at 120°C / 2 Bar	ATM	gms/25mm	-	-	-	-
Barrier						
Water Vapour Transmission Rate Oxygen Gas	ASTM E 398	gm/m²/24h	-	-	-	-
Transmission Rate	ASTM E 3985	cc/m²/24h		-	-	

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30°C & Humidity $55\pm5\%$ in storage area and material should be consumed with three month of receipt.

 ${\sf ATM: Aakash \; Test \; Method, \; MD: Machine \; Direction, TD: Transverse \; Direction}$

TRANSPARENT BOPP HEAT SEALABLE

APPLICATIONS

Transparent, both side heat sealable one side corona treated film for single or two ply printing lamination applications.

DESCRIPTION

Transparent, both side heat sealable, one side corona treated OPP film with excellent barrier, clarity, slip and antistatic properties for single or two ply printing laminate application. The corona treated side is specifically designed for excellent adhesion of inks and lamination adhesive during conversion. Both the sides exhibit excellent seal strength.

- · Excellent seal strength on both sides.
- High surface gloss and transparency.
- Very good barrier properties.
- Excellent slip and antistatic properties.
- · Excellent surface treatment retention.
- Excellent adhesion of inks and adhesive on treated side.
- Excellent machinability.
- · Excellent mechanical properties.
- · Excellent dimensional stability.

TRANSPARENT BOPP HEAT SEALABLE TECHNICAL DATA SHEE

PROPERTIES	TEST METHOD	UNIT	A18H1	A20H1	A25H1	A30H1	A35H1	A40H1
Physical								
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	18 16.38 61.0	20 18.2 55.0	25 22.75 44.0	30 27.3 36.6	35 31.85 31.4	40 36.4 27.4
Surface								
Treatment Level (Min)	ASTM D 2578	dyne/cm	40	40	40	40	40	40
Optical								
Haze (Max) Gloss (Min) at 45 ⁰ Angle	ASTM D 1003 ASTM D 2457	%	2.5 95	2.5 95	2.5 90	2.5 90	2.5 90	2.5 90
Mechanical								
Coefficient of Friction (Max)	ASTM D 1894	Static Kinetic	0.50 0.40	0.50 0.40	0.50 0.40	0.50 0.40	0.50 0.40	0.50 0.40
Tensile Strength (Min)	ASTM D 882	_{kg/cm²} MD TD	1300 2700	1300 2700	1300 2800	1300 2800	1300 2800	1300 2800
Modulus (Min)	ASTM D 882	kg/cm² TD	18000 28000	18000 28000	18000 28000	18000 29000	18000 29000	18000 29000
Elongation (Max)	ASTM D 882	MD % TD	180 60	180 60	180 60	180 60	180 60	180 60
Thermal								
Shrinkage (Max) at 120°C / 5 min	ATM	MD % TD	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3
Seal Initiation Temperature (Max) 2 Bar / 1 Sec	ATM	°C	115-120	115-120	115-120	115-120	115-120	115-120
Sealing Strength (Min) at 120°C / 2 Bar / 1 Sec	ATM	gms/25mm	300	300	300	300	300	300
Barrier								
Water Vapour Transmission Rate	ASTM E 398	gm/m²/24h	6.5	6.0	6.0	5.5	5.5	5.0
Oxygen Gas Transmission Rate	ASTM D 3985	cc/m²/24h	1850	1800	1700	1700	1600	1500

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30 $^{\circ}$ C & Humidity 55 \pm 5% in storage area and material should be consumed with three month of receipt.

ATM: Aakash Test Method, MD: Machine Direction, TD: Transverse Direction

TRANSPARENT BOPP NON HEAT SEALABLE ONE SIDE TREATED

APPLICATIONS

Reverse printing and lamination for packaging applications, lamination of printed paper boards / posters / book covers etc.

DESCRIPTION

Transparent, non heat sealable, one side corona treated, high glossy OPP film with excellent clarity, slip and antistatic properties for use in printing and lamination application. The corona treated side is specifically designed for excellent adhesion of inks and lamination adhesives.

- · High surface gloss and transparency.
- Excellent clarity.
- · Excellent surface treatment retention.
- Excellent anchorage of lnks and lamination adhesive on treated side.
- · Excellent machinability.
- · Very good barrier properties.
- · Suitable for various printing / lamination machines.
- *Available in Inside / Outside Corona treated, as per the requirement of the customer

TRANSPARENT BOPP NON HEAT SEALABLE ONESIDE TREATED TECHNICAL DATA SHEET

PROPERTIES	I TEST METHOD	I UNIT I	A10N1	A12N1	A15N1	A18N1	A20N1 I	A25N1 I	A30N1
Physical									
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	10 9.1 109.9	12 10.9 91.7	15 13.7 73.0	18 16.4 60.9	20 18.2 54.9	25 22.7 44.0	30 27.3 36.6
Surface									
Treatment Level (Min)	ASTM D 2578	dyne/cm	38	38	38	38	38	38	38
Optical									
Haze (Max) Gloss (Min) at 45 ⁰ Angle	ASTM D 1003 ASTM D 2457	% -	1.5-2.0 95						
Mechanical									
Coefficient of Friction (Max)	ASTM D 1894	Static Kinetic	0.50 0.40						
Tensile Strength (Min)	ASTM D 882	kg/cm² TD	1300 2600	1300 2600	1300 2650	1300 2650	1300 2650	1300 2700	1300 2700
Modulus (Min)	ASTM D 882	kg/cm² TD	18000 28000						
Elongation (Max)	ASTM D 882	MD % TD	170 70	170 70	170 60	170 60	170 60	170 60	170 60
Thermal									
Shrinkage (Max) at 120°C / 5 min	ATM	MD % TD	3-5 2.5	3-5 2.5	3-5 2.8	3-4 2.5	3-4 2.5	3-4 2.5	3-4 2.5
Seal Initiation Temperature (Max)	ATM	°C	-	-	-	-	-	-	-
Sealing Strength (Min) at 120°C / 2 Bar / 1 Sec	ATM	gms/25mm	-	-	-	-	-	-	-
Barrier									
Water Vapour Transmission Rate	ASTM E 398	gm/m²/24h	9.0	8.5	7.5	6.5	5.5	4.5	3.0
Oxygen Gas Transmission Rate	ASTM E 3985	cc/m²/24h	2350	2250	2250	2200	2200	2150	2100

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30°C & Humidity $55\pm5\%$ in storage area and material should be consumed with three month of receipt.

ATM: Aakash Test Method, MD: Machine Direction, TD: Transverse Direction

TRANSPARENT BOPP NON HEAT SEALABLE BOTH SIDE TREATED

APPLICATIONS

Non heat sealable both side treated base film for aluminium vaccum metallization.

DESCRIPTION

Transparent, non heat sealable, both side corona treated OPP base film For vacuum metallization application. One side is corona treated and specifically designed with metal receptive material for excellent adhesion of aluminium on the surface during metallization. Other side is corona treated and specifically designed for excellent anchorage of lamination adhesive for three ply lamination structure.

- · High surface gloss and transparency.
- Excellent surface treatment retention.
- Excellent adhesion of aluminium on metal receptive treated side.
- Excellent anchorage of lamination adhesive on non metallizable treated side.
- · Excellent machinability.
- Excellent mechanical properties.
- Excellent dimensional stability.

TRANSPARENT BOPP NON HEAT SEALABLE BOTHSIDE TREATED TECHNICAL DATASHEE

PROPERTIES	I TEST METHOD	I UNIT	A15N2-MD	A18N2-MD	A20N2-MD	I A25N2-MD	A30N2-MD
Physical							
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	15 13.65 73.2	18 16.38 61.3	20 18.2 55.0	25 22.75 44.0	30 27.3 36.6
Surface							
Treatment Level (Min) Metal Receptive Side / Non Metallisable Side	ASTM D 2578	dyne/cm	40 / 38	40/38	40/38	40/38	40/38
Optical							
Haze (Max) Gloss (Min) at 45 ⁰ Angle	ASTM D 1003 ASTM D 2457	% -	2.2 90	2.2 90	2.2 90	2.2 90	2.2 90
Mechanical							
Coefficient of Friction (Max) Tensile	ASTM D 1894	Static Kinetic	0.55 0.45 1300	0.55 0.45 1300	0.55 0.45 1300	0.55 0.45 1300	0.55 0.45 1300
Strength (Min)	ASTM D 882	kg/cm² TD	2650	2700	2700	2800	2800
Modulus (Min)	ASTM D 882	kg/cm² TD	17000 28000	17000 28000	17500 28000	18000 28000	18000 28000
Elongation (Max)	ASTM D 882	% MD % TD	170 70	170 70	170 70	170 70	170 70
Thermal							
Shrinkage (Max) at 120°C / 5 min	ATM	% MD	4-5 2-3	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3
Seal Initiation Temperature (Max)	ATM	°C	-	-	-	-	-
Sealing Strength (Min) at 120°C / 2 Bar	ATM	gms/25mm	-	-	-	-	-
Barrier							
Water Vapour Transmission Rate Oxygen Gas Transmission Rate	ASTM E 398 ASTM D 3985	gm/m²/24h cc/m²/24h		7.5 2200	6.5 2200	5.5 2250	5.0 2200

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30 $^{\circ}$ C & Humidity 55 \pm 5% in storage area and material should be consumed with three month of receipt.

ATM: Aakash Test Method, MD: Machine Direction, TD: Transverse Direction

METALIZED BOPP FILMS

APPLICATIONS

Heat sealable metalized film for single or two ply packaging structure.

DESCRIPTION

One side metallized, other side heat sealable OPP film for use in single or two ply packaging structure. The film exhibits excellent water vapour and gas barrier properties. During metallization process film is treated with plasma for improving metal adhesion and barrier properties. Metallised side is specifically designed for excellent surface treatment retention behaviour as well as very good anchorage with lamination adhesives. The untreated heat sealable side exhibits excellent seal strength.

- · Excellent surface gloss on metallized side.
- · Very good water vapour and gas barrier properties.
- · Excellent adhesion of aluminium.
- Very good anchorage of lamination adhesive on metallized side.
- Very good metal bond Strength.
- Very good lamination Bond strength.
- · Excellent machinability.
- · Very good seal Strength

METALIZED BOPP FILMS DATA SHEET

PROPERTIES I	TEST METHOD	I UNIT	I A15H1-MZ	A18H1-MZ	A20H1-MZ	A25H1-MZ	A30H1-MZ	A35H1-MZ
Physical								
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	15 13.65 73.0	18 16.38 61.0	20 18.2 55.0	25 22.75 44.0	30 27.3 36.6	35 31.8 31.4
Optical								
Optical Density (Min)	ATM	-	2.0	2.2	2.2	2.2	2.2	2.2
Mechanical								
Coefficient of Friction (Max)	ASTM D 1894	Static Kinetic	0.50 0.40	0.50 0.40	0.50 0.40	0.50 0.40	0.50 0.40	0.50 0.40
Tensile Strength (Min)	ASTM D 882	kg/cm² MD	1300 2500	1300 2600	1300 2600	1300 2700	1300 2700	1300 2700
Modulus (Min)	ASTM D 882	kg/cm² TD	16000 28000	18000 28000	18000 28000	18000 28000	18000 28000	18000 28000
Elongation (Max)	ASTM D 882	MD % TD	180 60	180 60	180 60	180 60	180 60	180 60
Thermal								
Shrinkage (Max) at 120°C / 5 min	ATM	"MD "TD	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3	3-4 2-3
Seal Initiation Temperature (Max)	ATM	°C	115-120	115-120	115-120	115-120	115-120	115-120
Sealing Strength (Min) at 120°C / 2 Bar / 1 Sec	ATM	gms/25mm	300	300	300	300	300	300
Barrier								
Water Vapour Transmission Rate	ASTM E 398	gm/m²/24h	0.80	0.75	0.70	0.75	0.70	0.75
Oxygen Gas Transmission Rate	ASTM E 3985	cc/m²/24h	90	80	75	68	58	40

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30°C & Humidity $55\pm5\%$ in storage area and material should be consumed with in 30 days from date of receipt.

CPP FILMS

APPLICATIONS

Printing, lamination & pouching application.

DESCRIPTION

Transparent, both side heat sealable, one side corona treated CPP film with excellent barrier, clarity, slip and antistatic properties for single or two ply printing laminate application. The corona treated side is specifically designed for excellent adhesion of inks and lamination adhesive during conversion.

- Good optical properties.
- Low slip for high speed packaging.
- · Excellent machinability.
- · Excellent heat seal strength.

CPPFILMS IECHNICALDAIA SHEET

PROPERTIES	TEST METHOD	I UNIT I	AC18H1	I AC20H1	I AC25H1	AC30H1	I AC35H1	AC40H1
Physical								
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	18 16.38 61.0	20 18.2 55.0	25 22.75 44.0	30 27.3 36.6	35 31.85 31.4	40 36.4 27.4
Surface								
Treatment Level (Min)	ASTM D 2578	dyne/cm	38	38	38	38	38	38
Optical								
Haze (Max) Gloss (Min) at 45 ⁰ Angle	ASTM D 1003 ASTM D 2457	% -	3.5 80	4.0	4.0 80	4.5 75	4.5 70	5.0 70
Mechanical								
Coefficient of Friction (Max) Tensile	ASTM D 1894	Static Kinetic	0.30 0.25	0.30 0.25	0.30 0.25	0.30 0.25	0.30 0.25	0.30 0.25
Strength (Min)	ASTM D 882	kg/cm ² TD	500 220	500 220	500 220	500 210	500 210	500 200
Modulus (Min)	ASTM D 882	kg/cm² TD	-	-	-	-	-	- 8
Elongation (Max)	ASTM D 882	MD % TD	450 600	450 600	450 600	450 600	450 600	450 600
Thermal						2.0		100
Shrinkage (Max) at 120°C/5 min	ATM	MD % TD	3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0
Seal Initiation Temperature (Max) 2 Bar / 1 Sec	ATM	°C	115-125	115-125	115-125	115-125	115-125	115-125
Sealing Strength (Min) at 120°C / 2 Bar / 1 Sec	ATM	gms/25mm	600	600	600	600	600	600
Barrier								
Water Vapour Transmission Rate Oxygen Gas Transmission Rate	ASTM E 398 ASTM E 3985	gm/m²/24h cc/m²/24h	14 3800	13 3800	12 3750	11 3700	11 3650	10 3650

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30° C & Humidity $55 \pm 5\%$ in storage area and material should be consumed with three month of receipt.

ATM : Aakash Test Method, MD : Machine Direction, TD : Transverse Direction

METALIZED CPP FILMS

APPLICATIONS

Heat sealable metallized film for lamination & Printing.

DESCRIPTION

One side metalized, other side heat sealable CPP film for packaging structure. The film exhibits excellent water vapour and gas barrier properties. During metallization process film is treated with plasma for improving metal adhesion and barrier properties. Metallized side is specifically designed for excellent surface treatment retention behaviour as well as very good anchorage with lamination adhesives. The untreated heat sealable side exhibits excellent seal strength.

- Very good water vapour and gas barrier properties.
- · Excellent adhesion of aluminium.
- · Very good metal bond strength.
- Excellent machinability.
- · Very good seal strength.

		71020111 1112	AUZZIII WIZ	AUZJIII-WZ	ACSUITI-IVIZ	ACSSHI-IVIZ	AC40H1-MZ
ASTM D 374 ATM ATM	Micron gm/m² m²/kg	20 18.20 54.9	22 20.02 49.95	25 22.75 55.0	30 27.30 44.95	35 31.85 31.40	40 36.40 27.47
ASTM D 2578	dyne/cm	38	38	38	38	38	38
ATM	-	2.2	2.2	2.2	2.2	2.2	2.2
ASTM D 1894	Static Kinetic	0.30 0.25	0.30 0.25	0.30 0.25	0.30 0.25	0.30 0.25	0.30 0.25
ASTM D 882		500 250	500 250	500 250	500 250	500 250	500 250
ASTM D 882	kg/cm² TD	-	-	-	-	-	-
ASTM D 882	MD % TD	450 600	450 600	450 600	450 600	450 600	450 600
ATM	MD % TD	3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0
ATM	°C	115-128	115-128	115-128	115-128	115-128	115-128
ATM	gms/25mm	600	600	600	600	600	600
ASTM E 398	gm/m²/24h cc/m²/24h	0.90	0.85 145	0.85 144	0.85 145	0.85 142	0.80 140
	ATM ATM ASTM D 2578 ATM ASTM D 1894 ASTM D 882 ASTM D 882 ASTM D 882 ASTM D 882	ATM gm/m² m²/kg ASTM D 2578 dyne/cm ATM - ASTM D 1894 Static Kinetic Kinetic ASTM D 882 kg/cm² TD ASTM D 882 kg/cm² TD ASTM D 882 % MD TD ATM °C ATM gms/25mm ASTM E 398 gm/m²/24h	ATM gm/m² 18.20 54.9 ASTM D 2578 dyne/cm 38 ATM - 2.2 ASTM D 1894 Static 0.30 (Sinetic 0.25 0.2	ATM gm/m² 18.20 20.02 49.95 ASTM D 2578 dyne/cm 38 38 ATM - 2.2 2.2 ASTM D 1894 Static 0.30 0.25 0.25 0.25 ASTM D 882 kg/cm² TD 250 250 ASTM D 882 kg/cm² TD - - ASTM D 882 % MD 450 450 600 ATM % MD 2.0 2.0 ATM % TD 2.0 2.0 ATM % TD 2.0 2.0 ATM % TD 2.0 600 ASTM E 398 gm/m²/24h 0.90 0.85	ATM gm/m² 18.20 20.02 22.75 55.0 ASTM D 2578 dyne/cm 38 38 38 ATM -	ATM gm/m² 18.20 20.02 22.75 27.30 44.95 ASTM D 2578 dyne/cm 38 38 38 38 38 ATM -	ATM gm/m² 18.20 20.02 22.75 27.30 31.85 31.40 ASTM D 2578 dyne/cm 38 38 38 38 38 38 ATM - 2.2 2.2 2.2 2.2 2.2 2.2 ASTM D 1894 Kinetic 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ASTM D 882 kg/cm² TD 250 250 250 250 250 250 250 ASTM D 882 kg/cm² TD ASTM D 882 kg/cm² TD 600 600 600 600 600 600 600 ATM % MD 450 450 450 450 450 600 600 600 600 ATM % MD 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ATM gms/25mm 600 600 600 600 600 600 600

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose. AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30°C & Humidity $55 \pm 5\%$ in storage area and material should be consumed with three month of receipt.

 ${\sf ATM: Aakash\ Test\ Method,\ MD: Machine\ Direction, TD: Transverse\ Direction}$

TRANSPARENT CPP FILMS

APPLICATIONS

Printing, lamination & pouching application.

DESCRIPTION

Transparent, both side heat sealable, one side corona treated CPP film with excellent barrier, clarity, slip and antistatic properties for single or two ply printing laminate application. The corona treated side is specifically designed for excellent adhesion of inks and lamination adhesive during conversion.

- Good optical properties.
- Low slip for high speed packaging.
- · Excellent machinability.
- · Excellent heat seal strength.

TRANSPARENT CPPFILMS ECHNICAL DATASHEE

PROPERTIES	I TEST METHOD	I UNIT I	AC50H1
Physical			
Thickness Grammage Yield	ASTM D 374 ATM ATM	Micron gm/m² m²/kg	50 45.50 21.98
Surface			
Treatment Level (Min)	ASTM D 2578	dyne/cm	38
Optical			
Haze (Max) Gloss (Min) at 45 ⁰ Angle	ASTM D 1003 ASTM D 2457	% -	3.0-4.0 75-85
Mechanical			
Coefficient of Friction (Untreated)	ASTM D 1894	Kinetic	0.20-0.30
Tensile Strength (Min)	ASTM D 882	kg/cm² MD	500-600 180-250
Elongation (Break)	ASTM D 882	_% MD % TD	500-600 600-700
Thermal			
Seal Initiation Temperature (Max) 2 Bar / 1 Sec Sealing Strength (Min) at 120°C / 2 Bar / 1 Sec	ATM ATM	°C gms/25mm	130 1200-2500
Barrier			
Water Vapour Transmission Rate (Max) (38°C & 90%RH)	ASTM E 398	gm/m²/24h	8

The values given in this technical datasheet are typical performance data and are believed to be accurate. These are given in good faith but it is for the customer to satisfy of the suitability for its own particular purpose.

AAKASH POLY FILMS LIMITED suggests the customer to confirm these values and product compatibility prior to their use and the company offers neither guarantee nor accept any responsibility for the fitness of the product for any particular use.

Storage & Handling : Temperature should preferably be less than 30° C & Humidity $55\pm5\%$ in storage area and material should be consumed with three month of receipt. ATM : Aakash Test Method, MD : Machine Direction,TD :Transverse Direction

For Business Enquires call +91-9925200690 or write to info@aakashpolyfilms.com

For International marketing write to exportsales@aakashpolyfilms.com

CORPORATE OFFICE

FACTORY

UNIT-1 Plot No. I-138,139,140 Road No. I-D1, GIDC, Sachin Dist., Surat - 394 230 Gujarat, India UNIT-2 | Plot No. 772/P, GIDC Industrial Estate, Jhagadia Dist., Bharuch - 393 110 Gujarat, India